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Abstract—Analytical expressions for the relative sensitivities
in the parameters of a standard intrinsic FET small-signal model
with respect to deviations in the measured -parameters are
derived. This enables, in combination with a measurement un-
certainty model, the model parameter uncertainties to be studied
versus frequency. As a result, optimal, minimum uncertainty,
parameter extraction can be performed independent of the bias
voltage and without prior knowledge about the device frequency
behavior, thus making it suitable for implementation in automatic
multibias extraction programs.

The derived sensitivities are furthermore used to analytically
calculate the uncertainty in the -parameter response of the ex-
tracted model in terms of the uncertainties in either the parame-
ters or the measurement it was extracted from.

Index Terms—FET, measurement errors, modeling, parameter
estimation, sensitivity, uncertainty, yield estimation.

I. INTRODUCTION

FOR MESFETs and high electron-mobility transistors
(HEMTs), the procedure of extracting small-signal model

parameters is well established. Usually direct-extraction
methods are used [1]–[4].

During the extraction process the measurement uncertainties
will give rise to corresponding uncertainties in the model pa-
rameters. The measurement uncertainties arise from limited dy-
namic range and accuracy of the measurement equipment, cali-
bration-standard accuracy and repeatability problems, etc.

Nevertheless, little work has been reported on how to find the
uncertainties with which the model parameters can be extracted.

In [5], King et al.give quantitative figures for the uncertainty
of intrinsic FET model parameters. Analytical expressions have
been used, but since only numerical figures are given at a single
frequency and bias point, it is difficult to draw any general con-
clusions from those results.

Walterset al. present in [6] experimental results for mea-
surement uncertainties and the resulting uncertainty in extracted
small-signal parameters. No details are given about the deriva-
tion of the model parameter uncertainties.
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In this paper, the intrinsic model parameter uncertainties are
analytically related to the -parameter measurement uncertain-
ties using a sensitivity analysis. The model parameter uncertain-
ties are used to perform optimal, minimum uncertainty, param-
eter extraction without having prior knowledge about the device
frequency characteristics.

Also, the derived sensitivities are used in the opposite direc-
tion, i.e., to relate the uncertainty in the modeled-parameter
response to either the model parameter uncertainties or to the
uncertainty in the measurement it was originally extracted from.
This gives information that, for example, can be used for design
yield estimation, which normally would require a separate sen-
sitivity analysis [7], [8] or a Monte Carlo simulation [9].

II. SENSITIVITIES AND UNCERTAINTY ESTIMATION

The relative sensitivity,1 , in a parameter for relative
changes in, e.g., is defined as

(1)

If only depends on , the relative change incan be related
to the relative change in using the sensitivity in (1)

(2)

In an FET modeling context the sensitivities may typically be
used to calculate a relative change in the transconductance for a
relative change in the measured magnitude of.

Usually, the model parameters depend on all measured-pa-
rameters. Thus, when calculating the change in, the contribu-
tions from all -parameters must be considered and added. The
change in can then be expressed in a compact form as

(3)

In fact, this represents a first-order Taylor series expansion of
in terms of the complex -parameters. It is, therefore, valid

only as long as the are sufficiently small. For larger ,
higher order derivatives/sensitivities must be taken into account.
However, for most parameters, the first order approximation is
good enough considering the relatively high accuracy obtained

1The notationK is used instead ofS for the relative sensitivities to avoid
confusion with theS-parameters.
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TABLE I
EXTRINSIC Y -PARAMETER SENSITIVITIES

in -parameter measurements. Hereafter, the approximation in
(3) is considered valid with equal sign used.

The measured-parameters are complex variables. Thus, un-
certainties may be expressed in terms of magnitude and phase
deviations. Since every contribution must be added in the sen-
sitivity calculations, the deviation in will be expressed in the
measured -parameters as

(4)

where it has been used that the magnitude and phase deviations
are usually specified in relative and absolute terms, respectively.

Usually, more than one parameter is extracted from the-pa-
rameters. The deviation in each of the model parameters can be
expressed in the -parameters deviations using sensitivities as
shown in (4). All model parameter deviations can, therefore, be
collected in a single matrix equation

...
...

...
...

... (5)

or, simply,

(6)

where and contains therelative2 model- and -param-
eter deviations, respectively (phase being in fact a relative mea-
sure of the arc length to the radius). With the absolute phase
deviations given in radians, it may be shown that the real mag-
nitude and phase sensitivities are found from the same complex
sensitivities in (3)

(7)

(8)

The measurement uncertainties are characterized by their statis-
tical properties. If the -parameter deviations are assumed to be
normal-distributed having a zero mean and being uncorrelated
makes it possible to use (6) to express the variances inin terms

2Observe that in (6), and equations derived therefrom, the symbolsx andS
represent relative quantities.

of the -parameter variances

(9)

where denotes taking the square of each individual ele-
ment in and

(10)

(11)

III. PARAMETER SENSITIVITY CALCULATIONS

The uncertainties in the measured-parameters will propa-
gate to the model parameters in the same way as the model pa-
rameters are extracted. Hence, the sensitivity analysis may be
carried out in parallel with the small-signal parameter extrac-
tion to find their uncertainties.

In the extraction of most small-signal models, the first step is
to convert the measured-parameters into extrinsic-parame-
ters, e.g., by [10],

(12)

where

(13)

(14)

(15)

It is then straightforward to derive all extrinsic-parameter sen-
sitivities using the definition in (1). The resulting sensitivities
are collected in Table I.

Usually, a parasitic network that accounts for pad-, package-,
andaccess-lineeffectssurroundstheintrinsicFETmodels[1],[3].

If the parasitic element values are known, e.g., from a
cold-FET extraction, the intrinsic -parameters, , can be
found using de-embedding techniques [1], [11].

In this paper, the parasitic element values are assumed to be
known with high accuracy. The intrinsic-parameter sensitiv-
ities can then be derived from the extrinsic-parameter sen-
sitivities. Our experience is, however, that the resulting differ-
ences between extrinsic and intrinsic sensitivities are small—es-
pecially if the influence of the device parasitic elements is small,
such as in on-wafer measurements.
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Fig. 1. High-frequency intrinsic FET small-signal model.

When the intrinsic -parameters are found, the model param-
eters are usually calculated analytically. Fig. 1 shows a com-
monly used intrinsic small-signal model shown to be valid up to
very high frequencies [3].

The derivation of the model parameter sensitivities will be
shownonly for and ,but issimilar for theotherparameters.

and can be determined from the intrinsic admittance
parameter

(16)

The relative sensitivity in can then be related to the and
sensitivities by

(17)

Evaluating the partial derivatives yields after some simplifications

(18)

Since the sensitivities in the real model parameters,and ,
also must be real, their sensitivities can be identified from the
real and imaginary parts of (18)

(19)

(20)

The complete list of parameter sensitivities with respect to mag-
nitude deviations is collected in Table II where the admittance
parameters are defined as

(21)

(22)

(23)

(24)

The corresponding admittance parameter sensitivities are given by

(25)

(26)

(27)

(28)

TABLE II
INTRINSIC MODEL PARAMETER SENSITIVITIES

The absolute phase sensitivities are, as discussed in the previous
section, found by multiplying the complex sensitivities in
Table II with the imaginary unit.

Once the parameter sensitivities are known, their uncertain-
ties can be estimated in terms of the-parameter uncertainties
using (9).

IV. M ODEL PARAMETER UNCERTAINTY

Measurements on an HEMT device are used together with an
-parameter measurement uncertainty model to estimate the un-

certainty in the extracted parameter values. The transistor used
is made in OMMIC’s D01PH GaAs process,3 and was mea-
sured with a 50-GHz Agilent 8510C vector network analyzer
(VNA) using coplanar probes. Measurements made in the satu-
rated region, used for maximum gain, are used to demonstrate
the uncertainty calculations.

The parasitic elements were initially determined with the
cold-FET method [1], [3]. Two of the intrinsic model param-
eters, and , are studied, where is normally easy to
extract whereas has a significant contribution only at higher
frequencies and therefore is more difficult to extract. The
frequency dependence of these parameters is shown in Fig. 2.

As is apparent from Fig. 2, the relative variations in are
much larger than those in making it difficult to decide which
value is the best to use.

To perform the parameter uncertainty calculations versus fre-
quency, the -parameter uncertainties must also be known. The

-parameter uncertainties are mainly due to limited dynamic
range and accuracy of the VNA and accuracy of the calibra-
tion standards used. Evaluation of the measurement uncertainty
using verification standards has shown that the uncertainties
achieved using a careful on-wafer thru-reflect line (TRL) cal-
ibration [12] are close to the ones specified for the VNA.

An empirical -parameter uncertainty model has therefore
been developed for the relative magnitude and absolute phase

3D01PH GaAs MMIC Process, OMMIC. Limeil-Brevannes, France
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Fig. 2. Extractedg andR versus frequency.

Fig. 3. Specified and modeled uncertainty inS andS .

uncertainties from the VNA specifications [13]. The model used
for and is given by

(29)
where is the frequency and the measured magnitude
of and , respectively, and are model parameters. The
first factor accounts for the-parameter magnitude dependence
and the second factor the frequency dependence of the uncer-
tainty. A similar model is used for the and uncertainties
with replaced by in the model.

Note that the VNA specifications are given asworst case,
which is usually taken as a 3confidence interval. is in this
text used as a general notation, hereafter in fact denoting 3.

The model and specification is shown for and in
Fig. 3. Note that the relative magnitude and absolute phase un-
certainty specifications are coincident.

Using the uncertainty models together with the sensitivity ex-
pressions in Table II makes it possible to evaluate the uncer-
tainty in the extracted model parameters for each measurement
frequency and bias point of interest. Fig. 4 shows the calculated
uncertainties for , , and versus frequency in the same
bias point as used before. From this figure it is clear that
should be extracted at low frequencies whileshould be ex-
tracted at high frequencies where the parameter uncertainty is
minimal. has an intermediate optimal extraction frequency
where the uncertainty is minimal. Table III shows all extracted

Fig. 4. Estimated relative uncertainty ing ,C , andR versus frequency.

parameters with corresponding estimated uncertainties and their
optimal extraction frequencies, . As can be seen in Table III,
the uncertainty in prevents extraction of its value with any
confidence.

Note that it may be necessary to perform a few iterations
to find the minimum uncertainty frequencies since the sensi-
tivity expressions—and, consequently, the parameter uncertain-
ties—are expressed in terms of the sought parameter values.

In existing methods, constant extraction frequencies are set
for the parameters independent of bias. Since the minimum un-
certainty frequencies will vary with bias, the presented method
gives inevitably more reliable multibias extraction results suit-
able for use in for example large-signal modeling.

Usually, to further reduce the parameter uncertainty, constant
frequency ranges are set for each model parameter over which
the parameters are averaged [14]. This results in a tradeoff be-
tween averaging range and parameter uncertainty and requires
detailed knowledge about the frequency dependence of the
model parameters for the device under test.

It is shown in the Appendix that, with knowledge of the
parameter uncertainties, a weighted average can be calculated
where more uncertain values are weighted less and vice versa in
a way that the resulting uncertainty in the parameter estimation
becomes minimal. Table III shows the optimally averaged
parameter values, the frequency range they were extracted from
and the resulting uncertainty.

Even if more uncertain values are automatically assigned less
weight, care should be taken to avoid clearly erroneous values.
This is easily done by, for example, only considering frequen-
cies where .

As for any method, accurate parameter extraction relies on ac-
curate extraction of the parasitic elements and validity of the in-
trinsic model used. In this example, there is a slight slope of
versus frequency making it difficult to tell which value is better
(see Fig. 2). This is probably caused by a small error in the par-
asitic extraction. Averaging will then offset the value compared
to the single frequency extraction in Table III. This problem is
common to all direct-extraction methods, but is reduced using
the presented weighted average where the more reliable values
are pronounced. Nevertheless, the resulting parameter uncer-
tainty may be underestimated in such cases.
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TABLE III
EXTRACTED MODEL PARAMETERS WITH UNCERTAINTY ESTIMATION

(a) (b)

Fig. 5. Measurement uncertainty and model uncertainty for the magnitude of (a)S and (b)S .

V. MODEL RESPONSEUNCERTAINTY

The model parameter uncertainties, found in the previous sec-
tion, result in a corresponding uncertainty in the-parameter
response when the model is used for simulation.

In (6), deviations in the model parameters are expressed as
function of -parameter deviations. If instead the model param-
eter deviations are given, the deviations in the-parameters can
be found from

(30)

where . Hence, analogous to (9), the uncertainty
in the simulated response is given by

(31)

where is the previously calculated minimum variance in
the extracted model parameters (see Table III). This expression
can be combined with (9) to express the simulated response un-
certainty directly in terms of the measured-parameter uncer-
tainties, which yields

(32)

As before, denotes element-wise squaring of the indi-
vidual elements and the model parameter sensitivities
evaluated at the frequencies of least uncertainty.

In these calculations, it has been assumed that the extracted
parameters are uncorrelated. This is valid if each of them is ex-

tracted at different frequencies, which may not be the case when
averaging is applied.

The measurement uncertainty model and sensitivities used in
the previous section have been applied in (32) to calculate the
uncertainty in the response of the model. The single-frequency
extraction in Table III has been used.

Fig. 5 shows the magnitude uncertainty in and . It
might seem counterintuitive that, for , the response from
the model gives lower uncertainty than the measurement it was
extracted from. This is caused by the gate capacitances in the in-
trinsic model topology used (see Fig. 1), which forces the input
to present at low frequency regardless of the measure-
ment or any parameter value.

The magnitude of , on the other hand, has no such restric-
tions and may take any value. The uncertainty in modeled
will, therefore, inevitably be larger than in the measurement.
Fig. 5 also shows that the gain of an amplifier design, using this
model extraction, could not be specified within less than 0.2 dB.

VI. CONCLUSIONS

An analytical derivation of the intrinsic FET model param-
eter sensitivities to variations in the extrinsic, measured,-pa-
rameters was presented. Measurements on a commercial HEMT
device have been used to illustrate how the sensitivity analysis,
in combination with a measurement uncertainty model, can be
used to calculate the uncertainty in the extracted small-signal
model parameters. This makes optimal extraction of the model
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Fig. 6. Extracted parameter values with corresponding uncertainties versus
frequency.

parameters possible without having any prior knowledge about
the device frequency characteristics.

The resulting knowledge about the frequency dependence of
the parameter uncertainties also enabled a “smart” averaging
method to further minimize the parameter uncertainty.

The derived sensitivities have been used also in the opposite
direction, i.e., to relate deviations in extrinsic-parameters in
terms of either the model parameter deviations or the-param-
eter measurement it was based on. Thereby, it is possible to di-
rectly calculate the uncertainty in the modeled-parameter re-
sponse in terms of the uncertainty in the measurement it was
extracted from.

Since the presented theory describes how optimal extraction
of the small-signal FET model parameters can be performed in-
dependently at any bias voltage and without having any prior
knowledge about the device frequency characteristics, we be-
lieve that it is well suited for implementation in multibias extrac-
tion software. Information about the uncertainties in extracted
model parameters can, for example, be used to track the accu-
racy during extractions or to check the statistical significance
of parameter variations in FET databases [15]. The calculated
uncertainty in the model response gives information about the
uncertainty in the circuit response, useful for design yield esti-
mation, without any additional simulations being necessary.

APPENDIX

In the presented analysis, the model parameter value and un-
certainty can be found at each frequency as shown in Fig. 6.

A weighted average of the different parameter values can then
be expressed as

(A1)

(A2)

where the weighting factors should be selected to minimize
the variance in . Since it is assumed that the deviation at each
measurement frequency is independent and normal-distributed,
the variance in can be expressed as

(A3)

where is the variance of the parameter at frequency. For
to be minimized, the partial derivatives with respect to each

of the weighting factors should be zero

(A4)

where (A2) has been used to eliminate theth term in (A3).
These equations can, after some manipulations, be arranged in
a single matrix equation for the optimal weighting factors

...
...

. . .
...

...
...

... (A5)
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